Research advances in animal models for OCD/PANDAS

Tyler Cutforth, Ph.D.
Associate Research Scientist
Department of Neurology
Columbia Translational Neuroscience Initiative
Columbia University Medical Center
Disclosures

None

Funding:
NIH / NHLBI R01HL116995
NIH / NIMH NIMH R01MH112849
NIH / NCTSA (CUMC CAMPRII – BASIC)
International OCD Foundation
Newport Equities LLC (private donation)
PANDAS Network
<table>
<thead>
<tr>
<th>Antibody target</th>
<th>Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>NMDAR</td>
<td>Autoimmune Encephalitis</td>
</tr>
<tr>
<td>GlyR</td>
<td>Progressive Encephalomyelitis with Rigidity and Myoclonus (PERM)</td>
</tr>
<tr>
<td>AMPAR</td>
<td>Limbic Encephalitis</td>
</tr>
<tr>
<td>VGKC complex</td>
<td>Limbic Encephalitis</td>
</tr>
<tr>
<td>GABA<sub>B</sub>R</td>
<td>Paraneoplastic or immune-mediated limbic encephalitis</td>
</tr>
<tr>
<td>D2R, D1R</td>
<td>Basal ganglia encephalitis (Sydenham’s chorea, PANDAS)</td>
</tr>
<tr>
<td>GAD65</td>
<td>Stiff Person Syndrome (Cerebellar Ataxia)</td>
</tr>
</tbody>
</table>

Autoantibodies disrupt communication between neurons in autoimmune encephalitides

Access to the brain?
The blood-brain barrier: an important gatekeeper between the blood and central nervous system

- Maintains brain homeostasis
- Limits CNS entry of
 - pathogens
 - immune cells
 - drugs
Hypothesis 1: Destruction of tight junctions between endothelial cells

Engelhardt & Ransohoff, 2012 *Trends Immunol*
Huppert, J. *et al.*, 2010 *FASEB*
Okada & Khoury, 2012 *JCI*
Risau W. *et al.*, 1990 *JCB*
Hypothesis 2: Selective transport of antibodies from endothelial cells into the brain

Zhang, D. et al., 2012 Brain Behav Immun
Abuqayyas & Balthasar, 2012 Mol Pharmaceutics
Okun, E. et al., 2010 Neuromol Med
Diamond, B. et al., 2013 Ann Rev Immunol
Group A β-hemolytic *Streptococcus pyogenes* causes a plethora of autoimmune diseases

Implicated in autoimmunity

- Scarlet fever
- Rheumatic fever
- Glomerulonephritis
- Sydenham’s chorea
- PANDAS
- Heart
- Kidney
- Skin (viral toxin)
- Brain
Neurological symptoms in SC and PANDAS

SC
- Chorea
- Hypotonia
- Cardiac involvement
- Hyperactivity
- Obsessions

PANDAS
- Choreiform movements
- Tics
- Severe separation anxiety
- Urinary frequency
- Food refusal / anorexia
- Emotional lability
- OCD-like symptoms
- Contamination fears

![Before, During, After images]

Legend
- **Before**
- **During**
- **After**

Graph
- **Symptom severity**
- **Time**
S. pyogenes activates both the humoral (antibodies) and cellular (Th17 cells) immune system.

Generation of Th17 cells after multiple intranasal infections

A novel intranasal rodent model to understand cell-mediated immunity after *S. pyogenes* infections

Dileepan T *et al.*, (2011) *PLoS Pathogens*;
Dileepan T, Smith E. *et al.*, 2016 *J Clin Invest*
Hypothesis: Dysregulated Th17 immune response to *S. pyogenes* infections is key to understanding “autoimmune” complications associated with this pathogen.
Novel pathway for T cell entry into the CNS

Dileepan T., Smith E. et al., 2016 J Clin Invest
Outline

1. What is the role of GAS-specific Th17 cells in post-infectious basal ganglia encephalitis?

2. How do CD4+ T cells gain access to the brain?
Th17 and Th1 cells are present in the CNS after multiple GAS infections
Outline

1. What is the role of GAS-specific Th17 cells in post-infectious basal ganglia encephalitis?

2. How do CD4+ T cells gain access to the brain?
Blocking the recruitment of T cells into the CNS may be beneficial for the disease.
Acknowledgements

Agalliu Laboratory
Maryann Platt
Tyler Cutforth, Ph.D.
Erica Smith Ph.D.
Charlotte Wayne
Lauren Cuje M.S.
Nicole Ampatey
Sarah Chaudry

University of Minnesota,
Minneapolis
Paul Patrick Cleary, Ph.D.
Thamotharapail Dileepan,
V.D.M., Ph.D.

NIH / NHLBI R01HL116995
NIH / NIMH NIMH R01MH112849
NIH / NCTSA (CUMC CAMPRII
International OCD Foundation
Newport Equities LLC (private donation)
PANDAS Network